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This paper presents a newmodel predictive control system for connected hybrid electric vehicles to improve fuel economy.The new
features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously
optimized. One is energymanagement forHEV for𝑃batt; the other is for the energy consumptionminimizing problem of acc control
of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients
and the road gradients.Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency
characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc.)
are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem
is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation
results reveal improvements in fuel economy using the proposed control method.

1. Introduction

In recent years, the energy and environmental problems are
emphasized. In particular, energy consumption of vehicles
accounts for a substantial amount in the transportation
sector. There are various approaches to reduce the fuel
consumption of vehicles [1–5]. High efficient vehicles are
being developed to increase fuel economy using lightweight
automobiles, efficient power train systems, electric vehi-
cles, and hybrid vehicles [1]. On the other hand, the so-
called ecodriving can also reduce the fuel consumption [5–
9]. Ecodriving can be characterized as avoiding aggressive
acceleration or braking at any road-traffic situations, cruising
at steady speed, decelerating smoothly at stops with little or
no braking, and maintaining an optimal distance from the
preceding vehicle. An ecological control of a single vehicle on
a road with up-down shapes [2] and efficient spacing control
of multiple vehicles [10] were presented.

A lot of works have been published on the energy man-
agement problem of hybrid electric vehicle (HEV) and plug-
in hybrid electric vehicle (PHEV) systems. These approaches

are typical in a family of optimal control techniques. They
can be subdivided into four categories: numerical opti-
mization, analytical optimal control theories, instantaneous
optimization, and heuristic control techniques [11]. The
most representative of numerical optimization is dynamic
programming (DP) [11, 12]. However DP is based on fixed
speed patterns which are impossible to get in reality. A
kind of analytical optimal control techniques is Pontryagin’s
minimum principle [13]. It gives necessary conditions that
the optimal solution must satisfy. It also needs to know the
entire driving cycle in advance. The convex optimization
method [14] is also a kind of analytical optimal control
techniques. The global optimality is guaranteed and the
optimal solution can be rapidly and efficiently attained by
solvers available. The instantaneous optimization includes
the equivalent consumption minimization strategy (ECMS)
[2, 15]. It is based on instantaneous optimization and is easy
to implement in real-time. However it cannot guarantee the
optimality over the whole driving cycle. Heuristic control
techniques like rule-based control strategies [2] are robust,
but they are impossible to guarantee the optimality.
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To obtain even more fuel economy improvements, con-
nected hybrid electric vehicles can be considered to reduce
the air resistance. The air resistance of a vehicle is propor-
tional to the square of the vehicle speed. When a vehicle runs
at 100 km/h, its aerodynamic drag reaches more than sixty
percent of totalmotion resistance forces [16]. It is obvious that
its air resistance causes high fuel consumption. However, the
air resistance can be reduced by maintaining a short spacing
between two vehicles. Connected vehicles in an automated
highway system can lead to increased driver safety, decreased
road congestion, and improved fuel economy [17]. Connected
vehicles can improve fuel economy through reduced wind
resistance [18–20].

A low pressure area distributes in the rear of the lead
vehicle. The size of the area can be different by changing
the spacing between the vehicles. If the following vehicle
runs at the back of the lead vehicle with a short spacing, its
air resistance is decreased owing to improved airflow profile
between the vehicles. Furthermore, the air resistance of the
lead vehicle is also decreased by the smooth airflow [20].
Therefore, fuel consumption of both vehicles can be reduced.
However, it is difficult to follow the lead vehicle with a short
spacing at high speed by a human driver. Automated cruise
control of the vehicle should be introduced to achieve this.
Various conventional longitudinal control systems have been
proposed such as vehicle following method using informa-
tion of other vehicles [10] and point following method using
a certain decided phase point [21]. A control law for internal
combustion engine vehicles is proposed which uses relative
speed and spacing information from the preceding and fol-
lowing vehicles in order to choose the proper control action
for smooth vehicle following and for maintaining a desired
intervehicle spacing specified by the driver [22]. Connected
automatic guided electric vehicles to solve problems of traffic
saturation, relying on GPS sensors and intervehicle commu-
nication, are addressed in [23]. However, these conventional
methods consider string stability only.The quantitative effect
of road shape and air resistance on fuel consumption for
hybrid electric vehicles (HEVs) has not been researched.

For connected hybrid electric vehicles, it is necessary
to compute the optimum control inputs of the vehicles
by anticipating the future situations including road shape,
vehicles’ states, and road loads. Therefore, model predictive
control (MPC) method can be used.

This paper extends HEV energy management research by
adding two novel contributions. First, the battery charge and
discharge profile and the driving velocity profile are simul-
taneously optimized. We make the two connected problems
together: one is energy management for HEV for the battery;
the other is for the energy consumption minimizing problem
of speed control of two vehicles. In reality, the two connected
problems are coupled together and affect each other always.
The speed of the vehicle affects the charge and discharge
profile of the battery. The charge and discharge profile of
the battery affects the speed of the vehicle. Second, a new
policy between the global optimization method and the
instantaneous optimization method is developed. The global
optimization method like dynamic programming needs all
the information in the future to compute the global optimal

control input. The instantaneous optimization method needs
no information in the future to compute the control input.
The easiest way to deal with the complicated control system
is to divide the longitudinal vehicle control system into an
upper and lower level controller. The upper level controller
determines the desired acceleration of the vehicle on the
basis of the position and velocity relative to the other vehicles
in the string. The lower level controller determines the
input commands to the engine and the braking system, to
accomplish the desired acceleration. Also, there is possible to
consider road slope, wind, and so forth as a disturbance for
the problem. However, in this work we intended to optimize
the fuel economy and the speed profile for high fuel efficiency
and safety simultaneously. In the HEV operation it is desir-
able to charge or discharge the battery properly according
to the road loads. There is a problem between the fast
dynamics components like the engine and the slow dynamics
components like the battery. The prediction horizon of the
battery state is limited. We developed a new policy to predict
the battery state in a longer future for better performance.
The desired battery state of charge is designed according to
the road slopes for better recuperation of free braking energy.
The battery state of charge profile is scheduled systematically
to improve fuel economy inside the HEV considering the
effect of different parameters, that is, road conditions, battery
state of charge, and real-time implementation ability. The
quantitative analysis of the vehicle spacing influence and the
battery state of charge profile influence for the fuel economy
is presented. Performance of the proposed system has been
evaluated by computer simulation. The proposed system is
found to be more fuel efficient and safer for running over
several typical roads with up-down slopes.

The rest of this paper is organized as follows. In Section 2,
the nonlinear model of two connected power-split HEVs is
derived. Section 3 formulates the nonlinear model predictive
control algorithm. Section 4 presents comparative simulation
results. Section 5 provides conclusions.

2. Modeling of Two Connected HEVs

The configuration of the HEV system is shown in Figure 1.
FD represents the final drive. The power-split device (PSD)
is the key component of the power-split HEV system and has
both functionality of speed coupler and continuously variable
transmission (CVT).There are five dynamic components: the
engine, the battery, two motor/generators (𝑀/𝐺), and the
wheels in this power-split HEV system. The only dynamic
state to be considered in the optimal control problem based
on known driving cycle is the battery state of charge (SOC)
which can simplify the MPC algorithm for implementation.
This simplification is possible because this paper introduces
four constraints: the road load, the torque and speed relation-
ship of the speed coupler, the power flow relationship among
the five components, and the engine optimal operating line
(OOL) using CVT. In this work, we assume that the engine
works along its OOL using CVT. For simplicity, we assume
the two vehicle configurations are the same. It is assumed that
the central controller set in the lead vehicle controls the two
vehicles. The central controller computes the control inputs
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Figure 1: Configuration of the power-split HEV system. Diagram adapted from [12].

of the two vehicles. The control inputs of the two vehicles
are fed into the two vehicles, respectively. The states of the
two vehicles are measured and sent to the central controller.
In this way a closed control loop is formed. Here, we call it
central control system of connected vehicles. In a distributed
control system of connected vehicles [18–20], the individual
vehicles are controlled separately by its own controller. It
cannot predict other vehicles precisely. In a central control
system of connected vehicles, all the information of the
vehicles is shared, and the global optimality of all the vehicles
can be obtained. The distance between the two vehicles
changes (which affect the air drag coefficient) and the slope
changes; therefore the stability of this controller is very
important. However, the control scheme proposed in this
work is brandnew; the stability of this controller is completely
different from that of the distributed control system of
connected vehicles. Hence, we would like to add the stability
problem as our future directions because of its complexity.
The control signals are transmitted to the vehicles through
intervehicle communication. It is assumed that there is no
delay of the communication.The proposedmethodology will
work independently of other kinds of vehicles on the roadway
in the network if the vehicle has the functionality of CVT.This
paper divided the optimal control problem into two levels.
The high-level controller determines the optimal battery
power and the low-level controller determines the optimal
torque and speed of the engine and the motor/generators.
This paper focuses on the high-level controller.

The torque and speed relationship of the speed coupler
can be expressed as [24]

𝜏eng (𝑡) = − (1+
𝑅

𝑆
) 𝜏
𝑀/𝐺1 (𝑡) ,

𝜏eng (𝑡) = − (1+
𝑆

𝑅
)(𝜏
𝑀/𝐺2 (𝑡) −

𝜏req (𝑡)

𝑔
𝑓

) ,

𝑆𝜔
𝑀/𝐺1 (𝑡) + 𝑅𝜔𝑀/𝐺2 (𝑡) − (𝑆 +𝑅) 𝜔eng (𝑡) = 0,

(1)

where 𝑆 and 𝑅 are the number of sun gear and ring gear
teeth, respectively, 𝜏

𝑀/𝐺1, 𝜏𝑀/𝐺2, 𝜏req, and 𝜏eng are the torques

of𝑀/𝐺1,𝑀/𝐺2, the road load, and the engine, respectively,
and 𝜔

𝑀/𝐺1, 𝜔𝑀/𝐺2, and 𝜔eng are the angular speeds of𝑀/𝐺1,
𝑀/𝐺2, and the engine, respectively.

The power flow relationships among the five components
at the inverter and the power-split device in Figure 1 are given
as

𝑃batt (𝑡) = 𝑃𝑀/𝐺1 (𝑡) + 𝑃𝑀/𝐺2 (𝑡) ,

𝑃req (𝑡) = 𝑃𝑀/𝐺1 (𝑡) + 𝑃𝑀/𝐺2 (𝑡) + 𝑃eng (𝑡) ,
(2)

where 𝑃batt, 𝑃𝑀/𝐺1, 𝑃𝑀/𝐺2, 𝑃eng, and 𝑃req are the power of the
battery,𝑀/𝐺1,𝑀/𝐺2, the engine, and the road load.

This paper assumes that the engine always works along its
OOLusingCVTwhich can also be considered as a constraint.
When the engine power is known, by looking up the table of
OOL, the engine speed and torque can be obtained.

This paper evaluates the fuel consumption using Willans
line method to reduce the complexity of the engine fuel
consumption model. It was found that good approximations
are obtained using the Willans line method [25]. The fuel
consumption can be expressed as

�̇�
𝑓 (𝑡) = �̇�𝑓 (𝑃req (𝑡) − 𝑃batt (𝑡))

≈ 𝑐
𝑓
(𝑃req (𝑡) − 𝑃batt (𝑡)) ,

(3)

where 𝑐
𝑓
is a constant. The detailed explanation of this fuel

consumption model is included in Appendix A.
The road loads which are the vehicle speed and the

required power at the wheels are known when the driving
cycle is known. From the configuration of the power-split
HEV system,𝑀/𝐺2 speed is also known as

𝜔
𝑀/𝐺2 (𝑡) =

𝑔
𝑓

𝑟
𝑤

Vreq (𝑡) , (4)

where 𝜔
𝑀/𝐺2 is the speed of𝑀/𝐺2, 𝑔

𝑓
is the final drive gear

ratio, 𝑟
𝑤
is the wheel radius, and Vreq is the required vehicle

speed by the driving cycle.
For simplicity, it is assumed that there are two cars in this

central control system. When the driving cycle is unknown,
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the system dynamics includes the battery and the vehicle
dynamics. Both the fuel economy and the driving profile are
optimized. The system model is then represented by

�̇�

=

[
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[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
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(5)

𝑥 = [𝑝𝑝 V
𝑝
𝑧
𝑝
𝑥SOC𝑝 𝑧

ℎ
V
ℎ
𝑤
ℎ
𝑥SOCℎ]

𝑇

,

𝑢 = [𝑢𝑝 𝑃batt𝑝 𝑢
ℎ
𝑃battℎ]

𝑇

,

(6)

where 𝑝, V, and 𝑧 are the vehicle position, speed, and
acceleration or deceleration converted from the traction force
or brake force.The parameters 𝜌,𝐶

𝐷
,𝐴,𝑚, 𝑔, 𝜇, and 𝜃(𝑝) are

the air density, the air drag coefficient, the frontal area of the
vehicle, the vehicle mass, the gravity acceleration, the rolling
resistance coefficient, and the road grade. 𝑢

𝑝
, 𝑢
ℎ
, and 𝑘

𝑝
are

the vehicle acceleration or deceleration control inputs and
the delay constant. 𝑉OC, 𝑅batt, and 𝑄batt are the open-circuit
voltage, the internal resistance, and the capacity of the battery.
The suffixes 𝑝 and ℎ denote the parameters of the preceding
vehicle and the host vehicle.

The slope information from GPS or the digital map
is approximated by the sigmoid functions. This modeling
method of road slope is firstly proposed in this work.
A description of the modeling method is provided in
Appendix B.

3. Model Predictive Control

Thedriving control inputs are derived usingmodel predictive
control algorithm.The optimal control problem is defined as

Min. 𝐽 = ∫

𝑡+𝑇

𝑡

𝐿 (𝑥 (𝜏 | 𝑡) , 𝑢 (𝜏 | 𝑡)) 𝑑𝜏 (7)

subject to SOC
𝑝min ≤ 𝑥SOC𝑝 (𝜏 | 𝑡) ≤ SOC

𝑝max

𝑃batt𝑝min ≤ 𝑃batt𝑝 (𝜏 | 𝑡) ≤ 𝑃batt𝑝max

𝑢
𝑝min ≤ 𝑢𝑝 (𝜏 | 𝑡) ≤ 𝑢𝑝max

SOC
ℎmin ≤ 𝑥SOCℎ (𝜏 | 𝑡) ≤ SOC

ℎmax

𝑃battℎmin ≤ 𝑃battℎ (𝜏 | 𝑡) ≤ 𝑃battℎmax

𝑢
ℎmin ≤ 𝑢ℎ (𝜏 | 𝑡) ≤ 𝑢ℎmax,

(8)

where 𝑇 is the prediction horizon and min and max denote the
minimum and maximum bounds of the parameters.

The following objectives are considered in this optimal
control problem.

The term 𝐿
𝑥
: acceleration or deceleration of vehicles is

moderated.
The term 𝐿

𝑦
: the vehicle speed is kept near to its desired

value.
The term 𝐿

𝑧
: the fuel consumption is minimized.

The term 𝐿
𝑑
: the battery SOC is kept near to its desired

value. This is one of the cores of the proposed approach. This
paper adapts the battery energy to the vehicle future energy
requirements by setting the desired battery SOC as a function
of road slopes which represent the main part of the future
road load.

The term 𝐿
𝑒
: the battery energy ismade best use of.This is

one of the cores of the proposed approach.The battery energy
is firstly used to satisfy the required road load. If it is not
enough, the engine energy should be used, and the engine
can work along its OOL.

The term 𝐿
𝑓
: the battery SOC constraint is kept satisfied.

The term 𝐿
𝑔
: the desired vehicle spacing is kept. This is

one of the cores of the proposed approach. The following
distance constraint is kept in a predictive controller structure.
The following distance is varied above the minimum follow-
ing distance, which improves the freedom of ecodriving car
following control to optimize the driving profile for better fuel
economy.

The cost function 𝐿 is defined as follows:

𝐿 = 𝑤
𝑥
𝐿
𝑥
+𝑤
𝑦
𝐿
𝑦
+𝑤
𝑧
𝐿
𝑧
+𝑤
𝑑
𝐿
𝑑
+𝑤
𝑒
𝐿
𝑒
+𝑤
𝑓
𝐿
𝑓

+𝑤
𝑔
𝐿
𝑔
,

𝐿
𝑥
= (𝑧
𝑝
−

(1/2) 𝜌𝐶𝐷𝑝𝐴𝑝V
2
𝑝

𝑚
𝑝

−𝑔𝜇)

2

+(𝑧
ℎ
−
(1/2) 𝜌𝐶𝐷ℎ𝐴ℎV

2
ℎ

𝑚
ℎ

−𝑔𝜇)

2

,

𝐿
𝑦
= (V
𝑝
− V
𝑑
)
2
+ (V
ℎ
− V
𝑑
)
2
,

𝐿
𝑧
=

𝑐
𝑓𝑝
(𝑚
𝑝
𝑧
𝑝
V
𝑝
− 𝑃batt𝑝)

(1 + 𝑒(−𝛽(𝑚𝑝𝑧𝑝V𝑝−𝑃batt𝑝)))

+

𝑐
𝑓ℎ
(𝑚
ℎ
𝑧
ℎ
V
ℎ
− 𝑃battℎ)

(1 + 𝑒(−𝛽(𝑚ℎ𝑧ℎVℎ−𝑃battℎ)))
,

𝐿
𝑑
= (𝑥SOC𝑝 − SOC

𝑑
(𝑝
𝑝
))

2

+ (𝑥SOCℎ − SOC
𝑑
(𝑝
ℎ
))

2
,

𝐿
𝑒
= (𝑚
𝑝
𝑤
𝑝
V
𝑝
−𝑃batt𝑝)

2
+ (𝑚
ℎ
𝑤
ℎ
V
ℎ
−𝑃battℎ)

2
,
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𝐿
𝑓
= − ln (𝑥SOC𝑝 − SOC

𝑝min)

− ln (SOC
𝑝max −𝑥SOC𝑝)

− ln (𝑥SOCℎ − SOC
ℎmin)

− ln (SOC
ℎmax −𝑥SOCℎ) ,

𝐿
𝑔
=
1
2
(𝑑 − 𝑑

𝑑
)
2
,

𝑑 = 𝑝
𝑝
−𝑝
ℎ
− 𝑙
𝑝
,

(9)

where𝑤
𝑥
,𝑤
𝑦
,𝑤
𝑧
,𝑤
𝑑
,𝑤
𝑒
,𝑤
𝑓
, and𝑤

𝑔
are the weights and V

𝑑
is

the desired vehicle speed.The parameters 𝑑, 𝑑
𝑑
, and 𝑙

𝑝
are the

vehicle spacing, the desired vehicle spacing, and the length
of the preceding vehicle. The parameter SOC

𝑑
is the desired

SOC value. The sigmoid function is chosen to evaluate the
vehicle brake fuel consumption. The log barrier function is
used as a penalizing term for violations of state constraints.

The structure of the nonlinear model predictive control
system is shown in Figure 2. The system inputs contain the
control inputs. The system outputs consist of the vehicle
states.Thepredictive controller uses terrain information from
a digital map to calculate SOC

𝑑
(𝑝) and 𝜃(𝑝).

At each time 𝑡, the optimal control input is computed
by solving the above optimal control problems during the
prediction horizon 𝑇. Only the first element of the optimal
control sequence is applied. At the next time step, the predic-
tion horizon moves forward, and the process is repeated.

4. Computer Simulations

4.1. Comparison Controllers. There are two simulations in
this work. They are the MPC approaches with fixed desired
battery SOC and variable desired battery SOC. The aim is
to demonstrate how the desired battery SOC affects the fuel
economy, the power-split profile, and the drag coefficients.

The desired battery SOC value is set according to the road
elevation.The authors think it is reasonable to utilize the road
elevation information since this future road load information
is known already. The desired battery SOC is assumed to use
the function as

SOC
𝑑
(𝑝)

= 𝑘SOC (
𝑠1

1 + 𝑒(𝑠3(𝑝−𝑠2))
+

𝑠4
1 + 𝑒(𝑠6(𝑝−𝑠5))

+ ⋅ ⋅ ⋅)

+ SOC
𝑘
,

(10)

where 𝑘SOC and SOC
𝑘
are constant parameters set as 𝑘SOC =

−2 and SOC
𝑘
= 0.7, respectively.

4.2. Simulation Conditions. In these simulations, the param-
eters of both HEVs are used from ADVISOR 2002 Toyota
Prius data (see Table 1). Seven tuning weights are used in this
cost function; this makes the performance very subjective
to choice of these weights. The goal is to minimize total
fuel used, so the real cost function should be integral of

HEV
Vehicle states

Real-time
optimal 

controller

Control inputs

Desired vehicle speed

Preceding vehicle position and speed

Vehicle 
position

Digital 
map

Slope

Desired
battery

SOC 
generator

Desired 
battery 

SOC

Figure 2: Structure of the model predictive control system.

Table 1: Simulation parameters.

Parameters Values
𝑚 1504
𝑐
𝑓

0.0874
𝑔 9.8 [m/s2]
𝑉OC 307.9 [V]
𝑄batt 6 [Ah]
𝑔
𝑓

3.93
𝑙
𝑝

4.31 [m]
ℎ
𝑡

0.1 [s]
SOCmin 0.6
𝑤
𝑥

100000
𝑤
𝑧

20
𝑤
𝑒

100
𝑤
𝑔

3000
𝜌 1.23 [kg/m3]
𝐴 1.746 [m2]
𝜇 0.015
𝑅batt 1.0 [Ω]
𝑟
𝑤

0.287 [m]
𝑘
𝑝

10
𝑑
𝑑

1 [m]
SOC
𝑑

0.7
SOCmax 0.8
𝑤
𝑦

2000
𝑤
𝑑

67000000
𝑤
𝑓

200000

fuel rate plus an equivalent fuel cost at the end of the MPC
horizon. Any other choice makes the cost function very
subjective and the optimal controller will not minimize fuel
use. Tuning of the weight parameters is an important issue
for attaining fuel efficient and safe behavior in the complex
system. Weight parameters are tuned manually by observing
the fuel economy and driving performance. 𝑤

𝑥
is tuned for

minimal fuel consumption by dynamic acceleration of the
vehicle. 𝑤

𝑧
is tuned for minimal fuel consumption by static

maps of the engine which cannot evaluate the dynamic fuel
consumption of the engine. 𝑤

𝑦
and 𝑤

𝑔
are tuned for safety

of driving to avoid real-ends collision. 𝑤
𝑑
and 𝑤

𝑒
are tuned
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Measure the host vehicle states, the preceding

Solve optimal control problem (7) with vehicle model (5) 

for a prediction horizon T, from

Implement the first element of the optimal control 
sequence as the current vehicle optimal control

vehicle states, and calculate SOCd(p) and 𝜃(p) from

GPS at time t = nh

𝜏 = nh to 𝜏 = nh + , and derive the optimal control sequenceT

n = n + 1

input: uopt
nh

(t) = u
opt
nh

(nh), nh ≤ t < (n + 1)h

{uopt
nh

(𝜏)}
𝜏=nh+T

𝜏=nh

Figure 3: Flowchart of the nonlinear real-time optimal control
algorithm.

for minimizing the equivalent fuel cost. 𝑤
𝑓
does not need

to be tuned ordinarily. The reason is that it is for the state
constraint. In reality, it is a physical constraint which cannot
be violated.

The model predictive control problem is solved using
the numerical computation method: the continuation and
generalized minimum residual (C/GMRES) method [26].
The C/GMRES method uses forward difference approach
and discretizes the HEV plant with a sampling interval
ℎ
𝑡
to implement the nonlinear real-time optimal control

algorithm. A brief description of the solution of the model
predictive control problem using the C/GMRES method is
included in Appendix C. The flowchart of the nonlinear
model predictive control algorithm implementation is shown
in Figure 3. Since the optimization problem is nonlinear
and nonconvex, its solution can be local optimal; it is
assumed that it can only be solved numerically. A detailed
mathematical analysis of robust stability and performance for
the proposedmethod can be found in [26].The fuel economy
is calculated using the engine fuel consumptionmap which is
obtained from ADVISOR 2002.

The MPC algorithm is realized by utilizing the C MEX
S-function builder in MATLAB/Simulink. First, the optimal
battery power is calculated by the high-level controller. Next,
this optimal value is fed into the low-level controller where
the optimal torque and speed of the engine and 𝑀/𝐺s are
determined. Finally, these actual control input signals are
applied to the vehicle. The fuel economy is calculated using
the quasi-static map of ADVISOR. The backward simulation
approach has been employed in this work, as ADVISOR
software based on quasi-static maps of power train elements
is utilized. However, (3) presents a different formula for fuel
consumption estimation which is not consistent with the way

Table 2: Comparison of the energy used bymotion resistance forces.

𝑐
11

4.498 × 10
−8

𝑐
12

−1.475 × 10
−6

𝑐
13

1.139 × 10
−5

𝑐
14

9.373 × 10
−5

𝑐
15

−0.002

𝑐
16

0.003
𝑐
17

0.035
𝑐
18

0.205
𝑐
21

1.326 × 10
−7

𝑐
22

−6.593 × 10
−6

𝑐
23

0.0001
𝑐
24

−0.0014

𝑐
25

0.0080
𝑐
26

−0.026

𝑐
27

0.046
𝑐
28

0.244

ADVISOR calculates the fuel consumption.The reason is that
(3) is for the control input calculation of the model predictive
control which needs to be continuous and have derivative,
and quasi-static maps of power train elements are used for
the output evaluation.

The parameters predicted are the road slope based on the
GPSdata and the traffic conditions.They are not embedded in
ADVISOR, as in this software the slope is assumed to be zero.
Quasi-static maps of power train elements in ADVISOR are
used only for the output evaluation.The traffic conditions and
their impact on the fuel consumption are predicted using the
connected vehicle model to achieve optimal vehicle spacing
for reducing air drag.

A set of data representing the relationship of the aero-
dynamic drag coefficient and the spacing obtained from
a wind tunnel experiment [20] is adopted. By using the
seventh-degree polynomial representation, the aerodynamic
drag coefficient 𝐶

𝑖
can be represented as

𝐶
𝑖 (𝑑 (𝑡)) = 𝑐𝑖1𝑑

7
(𝑡) + 𝑐𝑖2𝑑

6
(𝑡) + 𝑐𝑖3𝑑

5
(𝑡) + 𝑐𝑖4𝑑

4
(𝑡)

+ 𝑐
𝑖5𝑑

3
(𝑡) + 𝑐𝑖6𝑑

2
(𝑡) + 𝑐𝑖7𝑑 (𝑡) + 𝑐𝑖8,

(11)

where parameters 𝑐
𝑖1–𝑐𝑖8 are shown in Table 2. The approxi-

mation results of 𝐶
𝑖
are shown in Figure 4.

4.3. Simulation Results. The driving profile of the HEV using
the MPC algorithm with fixed desired battery SOC and
unfixed desired battery SOC (see Figures 5 and 6) shows
that the MPC algorithm can use the road slope information
well to reduce the fuel consumption. The rows of Figures
5 and 6 from the top are the slope of the road, the speed
of the preceding vehicle and the host vehicle, the battery
SOC of the preceding vehicle and the host vehicle, and the
vehicle distance between the preceding vehicle and the host
vehicle. The MPC algorithm simultaneously controls both
vehicles by predicting their states, and fast convergence
of their spacing is achieved. The vehicle accelerates before
the up slope to make use of the kinetic energy. The battery
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Table 3: Fuel economy comparison results.

Method Preceding vehicle
mileage (km/L)

Host vehicle
mileage (km/L)

Total
mileage (km/L)

MPC with unfixed SOC 31.9 (+2.9%) 20.4 (+3.0%) 12.4 (+2.5%)
MPC with fixed SOC 31.0 19.8 12.1

0 2 4 6 8 10 12
0.2

0.25
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0.35

0.4

0.45

0.5

d (m)

C
i

C1

C2

Figure 4: Approximation of 𝐶1 and 𝐶2 with respect to the spacing
𝑑.

recuperates vehicle braking power during the vehicle down
slope driving. The preceding vehicle SOC variation range is
smaller than that of the host vehicle. The host vehicle SOC
variation range with unfixed desired battery SOC is smaller
than that with fixed desired battery SOC. Since the engine
needs to charge the battery too often, the overuse of the
battery leads to worse fuel economy.

The energy profile of the HEV using the MPC algorithm
with fixed desired battery SOC and unfixed desired battery
SOC (see Figures 7 and 8) shows that the MPC algorithm
canmake the vehicle drag coefficients converge to minimum.
The rows of Figures 7 and 8 from the top are the air drag
power of the preceding vehicle and the host vehicle, the drag
coefficients of the preceding vehicle and the host vehicle,
the fuel consumption rate of the preceding vehicle and the
host vehicle, and the total cumulative fuel consumption. The
drag coefficients of both vehicles are reduced significantly
as a result of the fast convergence of the vehicle distance.
Therefore, the drag force is reduced, and fuel savings are
achieved. The air drag power of the host vehicle is smaller
than that of the preceding vehicle because of the vehicle
platooning. The fuel consumption of the HEV with unfixed
desired battery SOC is smaller than that with fixed desired
battery SOC. The reason is that, during the down slope
driving, the MPC algorithm with unfixed desired battery
SOCmakes better use of themotor regenerative braking than
that with fixed desired battery SOC.

All the constraints are satisfied in the simulation. The
overall fuel economy results are presented in Table 3. It is
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Figure 5: Driving profile of the HEV using theMPC algorithmwith
fixed desired battery SOC.

shown that the MPC approach with unfixed desired battery
SOC can improve fuel economy and keep the final SOC near
the initial SOC compared to that with fixed desired battery
SOC. There are two reasons. The first reason is that the
MPC approach with unfixed desired battery SOC makes the
battery use less often than thatwith fixeddesired battery SOC.
The second reason is that the MPC approach with unfixed
desired battery SOC reduces the duration and magnitude of
the braking during the down slope driving period compared
with that with fixed desired battery SOC. To sum up, the
reason why MPC approach improves the fuel economy while
keeping the SOC near initial status is the variation of the
battery SOC. This variation can facilitate charging when the
vehicles decelerate. The proposed method can improve the
fuel economy of both the preceding vehicle and the host
vehicle.
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Figure 6: Driving profile of the HEV using the MPC algorithm with unfixed desired battery SOC.

The fuel economies with different desired vehicle speed,
prediction horizon, and control horizon using the proposed
method were shown in Figures 10, 11, and 12. It is shown that
the best fuel economy occurs when the desired vehicle speed
is equal to 50 km/h, the prediction horizon is equal to 2 s, and
the control horizon is equal to 0.2 s.

MPC is sensitive to process-model mismatch. Process-
model mismatch is always present: wheels, weather and
road conditions, sensor accuracy, and so on. Therefore
performance and stability under nominal conditions do not
guarantee the robust performance and stability of the real
car. In order to analyze the robust stability and performance
of the MPC method, errors in slope sensor are assumed to
exist while traveling. The proposed MPC method is found
to be very robust against slope-sensing error. Figure 9 shows
the deviation of the driving and power-split profiles due to
errors in slope sensor for the lead vehicle. An error of 20%
means that the sensor provides 1.2 times the actual value,
whereas −20% error means that the sensor provides 0.8 times
the actual value of the slope. Due to a sensing error of 20%,
the vehicle speed is a bit lower; the battery SOC is a bit
higher; and compared with the vehicle with no slope-sensing
error, fuel savings dropped 3%. Similarly, due to a sensing
error of −20%, the vehicle speed is a bit higher; the battery
SOC is a bit lower; and compared with the vehicle with no

slope-sensing error, fuel savings increased 0.8%. Therefore,
it can be concluded that, within a reasonable sensing error,
the system is robust to maintain its ecological performance
without significant deviation. Since the optimization problem
is nonlinear and nonconvex, its solution can be local optimal;
it is assumed that it can only be solved numerically. A detailed
mathematical analysis of robust stability and performance for
the proposed method can be found in [26].

The process-model mismatch can also give rise to impor-
tant unfeasibility issues when computing the MPC control
law. A policy to recover from unfeasibility issues is needed
to be developed. The numerical computation method cannot
manage unfeasibility by itself. Since we are dealing here with
vehicles (i.e., people), a policy to recover from unfeasibility
issues cannot be developed by reformulating the MPC prob-
lem with soft constraints. A switch policy is proposed to cope
with the unfeasibility issues. It is summarized as follows.

Step 1. Switch the MPC algorithm to the rule-based algo-
rithm [1] when unfeasibility issues occur.

Step 2. Use the rule-based algorithm for 5 s, and switch back
to the MPC algorithm.

Step 3. Go back to Step 1 when unfeasibility issues occur.
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Figure 7: Energy profile of the HEV using the MPC algorithm with
fixed desired battery SOC.

TheproposedMPCalgorithm is fast for computation.The
computer simulation time is 153 [s]. The computation time
of the proposed MPC algorithm is 14 [s]. The simulation is
run in aMATLAB/Simulink environment using a laptopwith
an Intel processor at 2.27 [GHz] processing speed and 2 [GB]
of RAM.The sampling interval is 100 [ms]. The computation
time per sampling interval of the proposed MPC algorithm
is 9 [ms]. So it is concluded that the MPC algorithm has the
potential for real-time vehicle control.

5. Conclusions

Amodel predictive control system for two connected power-
split HEVs considering the fuel economy, the aerodynamic
drag varied by vehicle spacing, and the road shape informa-
tion has been presented. The performance of the proposed
control system was confirmed by the computer simulations.
The proposed control method has produced the fast conver-
gence of the vehicle spacing. The excessive acceleration and
deceleration have been avoided by predicting the road shapes.
The results revealed improvements of the fuel economy con-
sidering the effect of different parameters, that is, road con-
ditions, battery state of charge, and real-time implementation
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Figure 8: Energy profile of the HEV using the MPC algorithm with
unfixed desired battery SOC.

ability. Since experiments of vehicles are expensive, we would
like to conduct experiments in the future. For the sake of
simplicity, we have considered only two cars. In the future,
we will add more vehicles to make the model more realistic.

Appendices

A. Engine Fuel Consumption Model

The proposed engine fuel consumption modeling method
is a special method using both Willans line method and
the assumption of operating the engine along the engine
optimal operating line and is introduced as follows.TheHEV
parameters are used from the ADVISOR 2002 Toyota Prius
HEV data [27].

The Willans line model consists of an affine representa-
tion relating the available energy, that is, the energy that is
theoretically available for conversion, to the useful energy
that is actually present at the output of the energy converter
[25]. Formally

𝑊out = 𝑒𝑊in −𝑊loss, (A.1)
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Figure 10: Effects of the desired vehicle speed on fuel economy.

where the parameter 𝑒 represents the peak intrinsic energy
conversion efficiency of the converter and 𝑊loss represents
external (parasitic) losses. In fact, this model of energy
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Figure 11: Effects of the prediction horizon on fuel economy.

conversion efficiency is nonlinear, in that the parameters
𝑒 and 𝑊loss are represented as explicit functions of the
output flow variable (e.g., engine speed) and are also implicit
functions of the effort variable.
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Figure 13: The engine efficiency map to the best engine operating
points.

The modeling method given above is for general engines.
However, in this work, the electric CVT can realize idle
stop, so 𝑊loss becomes zero. When it is assumed that the
engine operating points are maintained at the best efficiency,
the parameters 𝑒 can be approximated as a constant. In this
case, the fuel consumption rate corresponding to the optimal
operating line can be fitted using a linear function.

The engine optimal operating line can be plotted on
the engine map as shown in Figure 13. The engine optimal
operating points provide the highest efficiency for a given
power level. The engine best efficiency related to the engine
power according to the engine characteristics is shown in
Figure 14.

The fuel consumption rate is estimated as (see Figure 15)

�̇�
𝑓
=

𝑃eng

𝐶𝜂
≈ 𝑐
𝑓
𝑃eng, (A.2)
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where 𝐶 is the calorific value of the gasoline, which is equal
to 34.5 × 106 [J/l], and 𝜂 is the engine efficiency.

B. Road Slope Modeling Method

A brief description of the road slope modeling method is
provided as follows. In this research, the sigmoid function is
used to model the road slope. The general sigmoid function
to model the road slope is expressed as follows:

𝜃 (𝑝) =
𝑠1

1 + 𝑒(𝑠3(𝑝−𝑠2))
+

𝑠4
1 + 𝑒(𝑠6(𝑝−𝑠5))

+ ⋅ ⋅ ⋅ , (B.1)

where 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, and 𝑠6 are slope shape parameters.
The parameters 𝑠2, 𝑠5, . . . are position parameters where the
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Figure 16: The sigmoid function of the up slope.
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Figure 17: The sigmoid function of the down slope.

road slopes change. The parameters 𝑠3, 𝑠6, . . . are parameters
to decide the abruptness of the road slope.

When it is the up slope case, the sigmoid function is
expressed as follows:

𝜃 (𝑝) =
0.05

1 + 𝑒(−(𝑝−200))
+

−0.05
1 + 𝑒(−(𝑝−400))

. (B.2)

The figure of the sigmoid function is showed in Figure 16.
When it is the down slope case, the sigmoid function is

expressed as follows:

𝜃 (𝑝) =
−0.05

1 + 𝑒(−(𝑝−200))
+

0.05
1 + 𝑒(−(𝑝−400))

. (B.3)

The figure of the sigmoid function is showed in Figure 17.

−0.05

0

0.05

Sl
op

e

0 100 200 300 400 500 600 700 800
Position (m)

0 100 200 300 400 500 600 700 800
0
2
4
6
8

10

Position (m)

El
ev

at
io

n 
(m

)

Figure 18: The sigmoid function of the up-down slope.

When it is the up-down slope case, the sigmoid function
is expressed as follows:

𝜃 (𝑝) =
0.05

1 + 𝑒(−(𝑝−200))
+

−0.1
1 + 𝑒(−(𝑝−400))

+
0.05

1 + 𝑒(−(𝑝−600))
.

(B.4)

The figure of the sigmoid function is showed in Figure 18.

C. Solution of the Model Predictive
Control Problem

A brief description of the solution of the model predictive
control problem is provided as follows.

To implement themodel predictive control algorithm, the
horizon 𝑇 is divided into 𝑁 steps, and the optimal control
problem is discretized. The general discretized optimal con-
trol problem is formulated as

min
𝑢

𝐽 =

𝑁−1
∑

𝑖=0
𝐿 (𝑥
𝑖 (𝜏 | 𝑡) , 𝑢𝑖 (𝜏 | 𝑡)) Δ𝜏 (𝑡)

subject to 𝑥
𝑖+1 (𝜏 | 𝑡)

= 𝑥
𝑖 (𝜏 | 𝑡)

+ 𝑓 (𝑥
𝑖 (𝜏 | 𝑡) , 𝑢𝑖 (𝜏 | 𝑡)) Δ𝜏 (𝑡)

𝐺 (𝑥
𝑖 (𝜏 | 𝑡) , 𝑢𝑖 (𝜏 | 𝑡)) ≤ 0,

(C.1)

where 𝑢 is the control input, 𝑥 is the state, and 𝐿 is the cost
function.𝑓(𝑥, 𝑢) is the state equation.𝐺(𝑥, 𝑢) is the inequality
constraint.

The inequality constraint in the optimal control problem
is converted to an equality constraint by introducing a
dummy input 𝑢

𝑑
for computation simplicity as follows:

𝐶 (𝑥 (𝑡) , 𝑢 (𝑡)) = 𝑢
2
(𝑡) + 𝑢

2
𝑑
(𝑡) − 𝑢

2
max = 0, (C.2)

where 𝑢max denotes the upper bound of the control input.
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To solve this optimal control problemwith the calculus of
variation method, the Hamiltonian function is defined by

𝐻(𝑥, 𝑢, 𝜆, 𝜓) = 𝐿 (𝑥, 𝑢) + 𝜆
𝑇
𝑓 (𝑥, 𝑢) +𝜓

𝑇
𝐶 (𝑥, 𝑢) , (C.3)

where 𝜆 denotes the costate and 𝜓 denotes the Lagrange
multiplier associated with the equality constraint.

The first-order necessary conditions for the optimal con-
trol input 𝑢, the multiplier 𝜓, and the costate 𝜆 are obtained
using the calculus of variation as

𝑥
𝑖+1 (𝑡) = 𝑥𝑖 (𝑡) + 𝑓 (𝑥𝑖 (𝑡) , 𝑢𝑖 (𝑡)) Δ𝜏 (𝑡)

𝑥0 (𝑡) = 𝑥 (𝑡) ,

𝜆
𝑖 (𝑡)

= 𝜆
𝑖+1 (𝑡)

+𝐻
𝑥
(𝑥
𝑖 (𝑡) , 𝑢𝑖 (𝑡) , 𝜆𝑖+1 (𝑡) , 𝜓𝑖 (𝑡)) Δ𝜏 (𝑡)

𝜆
𝑁 (𝑡) = 0,

𝐻
𝑢
(𝑥
𝑖 (𝑡) , 𝑢𝑖 (𝑡) , 𝜆𝑖+1 (𝑡) , 𝜓𝑖 (𝑡)) = 0

𝐶 (𝑥 (𝑡) , 𝑢 (𝑡)) = 0,

(C.4)

where 𝑥0 is the initial state.
To solve this optimal control problem, the continuation

and GMRES (C/GMRES) method is employed for computa-
tion cost reduction. The necessary conditions of optimality
for the constrained control input can be expressed as the
following equation:

𝐹 (𝑈 (𝜏 | 𝑡) , 𝑥 (𝜏 | 𝑡) , 𝑡)

:=

[
[
[
[
[
[
[
[
[

[

𝐻
𝑢
(𝑢0 (𝜏 | 𝑡) , 𝑥0 (𝜏 | 𝑡) , 𝜆1 (𝜏 | 𝑡) , 𝜓0 (𝜏 | 𝑡))

𝐶 (𝑢0 (𝜏 | 𝑡) , 𝑥0 (𝜏 | 𝑡))

.

.

.

𝐻
𝑢
(𝑢
𝑁−1 (𝜏 | 𝑡) , 𝑥𝑁−1 (𝜏 | 𝑡) , 𝜆𝑁 (𝜏 | 𝑡) , 𝜓𝑁−1 (𝜏 | 𝑡))

𝐶 (𝑢
𝑁−1 (𝜏 | 𝑡) , 𝑥𝑁−1 (𝜏 | 𝑡))

]
]
]
]
]
]
]
]
]

]

= 0,

𝑈 (𝑡)

:= [𝑢
𝑇

0 (𝜏 | 𝑡) , 𝜓
𝑇

0 (𝜏 | 𝑡) , . . . , 𝑢
𝑇

𝑁−1 (𝜏 | 𝑡) , 𝜓
𝑇

𝑁−1 (𝜏 | 𝑡)]
𝑇

.

(C.5)

𝐹(𝑈(𝑡), 𝑥(𝑡), 𝑡) = 0 is identical to

𝐹 (𝑈 (0) , 𝑥 (0) , 0) := 0,

�̇� (𝑈, 𝑥, 𝑡) = −𝐴 𝑠𝐹 (𝑈 (𝑡) , 𝑥 (𝑡) , 𝑡) ,

(C.6)

where𝐴
𝑠
is a stablematrix introduced to stabilize𝐹 = 0. If𝐹

𝑈

is nonsingular, a differential equation for𝑈(𝑡) can be obtained
as

�̇� = −𝐹
−1
𝑈
(𝐴
𝑠
𝐹−𝐹
𝑥
�̇� − 𝐹
𝑡
) . (C.7)

The above differential equation can be solved by the GMRES
method. The presented approach is also a kind of continua-
tion method.The solution curve𝑈(𝑡) is traced by integrating

the above differential equation. Because there is no need to
calculate the Jacobians and the linear equation iteratively,
C/GMRESmethod assures the real-time optimal control abil-
ity because of small computational cost.The detailed descrip-
tion of the solution for themodel predictive control algorithm
can be found [26].

Notations and Abbreviations

HEVs: Hybrid electric vehicles
MPC: Model predictive control
CVT: Continuously variable transmission
OOL: Optimal operating line
SOC: State of charge
PSD: Power-split device
𝑀/𝐺: Motor/generator
FD: Final drive
𝐴: Frontal area
𝐶
𝐷
: Aerodynamic drag coefficient

𝑔: Gravitational acceleration
𝑔
𝑓
: Final drive gear ratio

𝑚: Vehicle mass
𝑃batt: Battery power
𝑃eng: Engine power
𝑄batt: Battery nominal capacity
𝑟
𝑤
: Wheel radius

𝑅batt: Battery internal resistance
𝑉OC: Battery open-circuit voltage
𝜃: Road inclination
𝜇: Rolling friction coefficient
𝜌: Density of air
𝑆: The number of sun gear teeth
𝑅: The number of ring gear teeth
𝜏
𝑀/𝐺1: The torque of motor/generator 1
𝜏
𝑀/𝐺2: The torque of motor/generator 2
𝜏req: The torque of the road load
𝜏eng: The torque of the engine
𝜔
𝑀/𝐺1: The angular speed of motor/generator 1

𝜔
𝑀/𝐺2: The angular speed of motor/generator 2

𝜔eng: The angular speed of the engine
𝑃req: The power of the road load
𝑐
𝑓
: A constant for the fuel consumption

𝑝: The vehicle position
V: The vehicle speed
𝑤: The acceleration or deceleration

converted from the traction force or
brake force

𝑢
𝑝
: The acceleration or deceleration control

input of the preceding vehicle
𝑢
ℎ
: The acceleration or deceleration control

input of the host vehicle
𝑘
𝑝
: The delay constant

𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5,
and 𝑠6: Slope shape parameters
𝑇: The prediction horizon
min and max: The minimum and maximum bounds of

the parameters
𝑤
𝑥
, 𝑤
𝑦
, 𝑤
𝑧
, 𝑤
𝑑
,

𝑤
𝑒
, 𝑤
𝑓
, and 𝑤

𝑔
: The weights
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V
𝑑
: The desired vehicle speed

𝑑: The vehicle spacing
𝑑
𝑑
: The desired vehicle spacing

𝑙
𝑝
: The length of the preceding vehicle

SOC
𝑑
: The desired SOC value

𝑘SOC and SOC
𝑘
: Constant parameters

𝑐
𝑖1–𝑐𝑖8: Constant parameters for the

aerodynamic drag coefficients
𝐶: The calorific value of the gasoline
𝑢: The control input
𝑥: The state
𝐿: The cost function
𝑓(𝑥, 𝑢): The state equation
𝐺(𝑥, 𝑢): The inequality constraint
𝑢
𝑑
: The dummy input

𝑢max: The upper bound of the control input
𝜆: The costate
𝜓: The Lagrange multiplier associated with

the equality constraint
𝑥0: The initial state
𝐴
𝑠
: A stable matrix.
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